| Electrochemistry: |
| :--- | :--- |
| Definition: |
| The last unit was about the transfer of protons. This unit is |
| about the transfer of electrons. |
| When the number of electrons in an atom changes: |
| Therefore, in order to recognise reduction-oxidation reactions |
| (redox reactions): |
| Oxidation Number: "The charge an atom in a molecule would
 have if all the electrons in its bond belonged entirely to the more
 electronegative atoms" OR "A number assigned to an element to
 indicate its position on a scale of oxidation levels defined by an
 arbitrary set of rules" |
| Determining the oxidation number: |
| The Rules: |
| $1)$ |
| $4)$ |
| 4) |

A Nasty: (on Feb 08's provincial)	
Balance in Basic Conditions:	
	$\mathrm{IPO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{IO}_{3}{ }^{-}$ (by the way, this is called a disproportionation reaction - when the reactant both reduces and oxidizes)

| Assignment: Read pages 201-207 and do questions |
| :--- | :--- |
| 24 a, f, k, n, u |
| Balancing Using The Whole O.N. Method: |
| Ex: |
| $\mathrm{S}+\mathrm{HNO}_{3} \rightarrow \mathrm{SO}_{2}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$ |

	Read pages 208-209 and do questions \#25 a, e, \& m mitrations: Redox * the slow reaction of a reducing agent and an oxidizing agent. * Equivalence is viewed (endpoint) via an indicator OR as a huge change in voltage. A redox indicator changes colour when it goes from its oxidized to its reduced form. Ex: ferroin
Titration Curve would look much the same as for an acid base reaction.	

Read Pages 210-212

